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1. INTRODUCTION

In a recent paper [3] the author considers best approximating on I = [0, c]
the unique solution y(x) to

Ly =y" + F(x,y,¥) + G(x,3, ) — h(x) = 0 )
with initial conditions
y0) =By, YO = 5. 2

The solution is best approximated in the following sense: if P, = {P(x, 4)},
where 4 = (B,, By, a5 , a3 ..., ay), and where

P(x, A) = By + Bix + apx® + ax® + -+ + apx*,
then
I L[y()} — LLPCx, Al = sup | LIP(x, )] ©)
is minimized over P, . That is, (3) is minimized over all polynomials of

degree k that satisfy (2). In [3] it is shown that if the operator L in (1) satisfies
certain conditions, then the following statements are valid:

(A) There exists a polynomial P,(x, A*) € P;, such that
I LIP(x, 4)]l; = ipf sup | L[P(x, A)]|- @

(B) The sequences {Py(x, A*)} and {P,'(x, A%}, k = 1, 2,..., converge
uniformly on I to y(x) and y'(x) respectively.
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The choice of P, as the minimizing set is not arbitrary. Requiring that the
k-th degree polynomials over which (4) is minimized satisfy (2) insures that
(B) holds.

Generally it is not possible to find a best approximation from P to y(x)
on I (in the sense of (4)), even though one exists. Consequently in this paper
we consider best approximating y(x) on arbitrary subsets of . If RC I, and
if the operator L satisfies certain conditions, then it is shown that there
exists a P(x, Ag) € P, such that

| LIP(x, ARz = if%cf sup | L[P(x, A]. ®)
Again the choice of P, as the minimizing set is motivated by the desirability
of having (B) hold. It is also shown that as the number of points in a finite

subset increases, a subsequence of the best approximations to y(x) on these
finite point sets converges uniformly on I to a best approximation to y(x) on I.

2. THE OPERATOR L

We assume that L satisfies the conditions listed below.

(i) The functions F and G are elements of C[I x R2].

(i) IfP(x, A) = By + Byx + apx® + - + apx*, 4 = (By, By » 3 ..., A1),
and if | A | = B2 4+ B2 + @, + - + a;% then

| F(x, P(x, A), P'(x, A))] = 0(| 4]")  for large || 4||.

(iti) There exist functions u € C[I] and @ € C[R?] such that u(x) = 0 and
@(y,¥)=01iff y or ) =0, and there exists an « > max(1, n) such that

| GG, v, )| = v | u(x) @(y/r, y'Ir)| forall r > 1.

(iv) The function 4 € C[I].

It should be noted that these conditions are essentially those given in [3],
and that examples of nonlinear operators L satisfying conditions (i)-(iv) are
numerous (see [2, 3, 4] and the example in this paper).

3. MINiMIZING POLYNOMIALS ON ARBITRARY POINT SETS

In this section we establish the existence of best approximations on
arbitrary point sets contained in 7.
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Let
Ki={(c,c)lc?+ 2 <1}
and
K2 - {(C2 geeny Ck) [ C22 + C32 'J[‘ b + Ck2 == l}.
DeriNITION 1. Let C = (¢, ¢4 5..., €1), and let

P(x, C) = ¢y + c1x + cx% + -+ + ¢px®.

If RC 1, then
sup | u(x) @ [P(x, C), P'(x, O)]| = G&(C).
LemMMA 1. Let R,SC I contain at least k + 1 + I distinct points, and
suppose that u(x) has at most [ distinct zeros on I. Then

CI}(IIIIK Gr(C) = op >0, andif RCS, then og < os.

Proof. Since RC S, G(C) < G4(C). Thus o < a5. Now suppose that
or = 0. Then there exists a C* € K; X K, such that

sup lu(x) & [P(x, C*), P'(x, CH] = 0.

Then by (iii) either P(x, C*) = 0 or P'(x, C*) = 0 on at least k + 1 points
for C* e K; X K, . Hence either P(x, C*) = 0 on I or P'(x, C*) = 0, on I,
a contradiction to the linear independence of {1, x, x%,..., x*-1, x*}.

THEOREM 1. Suppose that the set R C I contains at least k + 1 + [ points.
If conditions (1)-(iv) are satisfied and if u(x) has at most | distinct zeros on I,
then there exists a polynomial P(x, A*) e P,, A* = (B,, B1, ax*,..., ),
such that

inf sup | L[P(x, A)]| = sup | L[P(x, A*)]].
P, R R
Proof. There exists a sequence {P(x, A™)} CP,,

P(x, A(n)) _ Bo + le 4 a(n)xz 4o a(") k
A = By, By, al™,..., al), such that

lim || LIP(x, A™)lx = inf sup | LIP(x, )]l = pr -
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Thus for all n = n,,
| L[P(x, A™)]lr < pr + 1.
Consequently the triangle inequality implies that
| G(x, P(x, A™), P'(x, A™))| (6)
< pr + 1+ | P'(x, A™)] + | F(x, P(x, A™), P'(x, A"))| + | h(x)|
for all x in R. Let

k
RE=14" P — @B+ B = Y [P,
=2
and suppose that r,? > max(l, 8,2 + B,2). Then

co AV (B0 B a2

rn rn ’ rﬂ ’ rn e rﬂ

is an element of K; X K, , (n = 1, 2,...). Also (ii), (iii), (iv), and (6) imply that

ra* | u(x) @ [P(x, A [ry), P'(x, A™[r,)]|
< My + 1y | P(x, A™[r,)| + O(| A™ ||, M
where M, = pp + 1 4+ max; | A(x)|. Hence Lemmé 1 and (7) imply that

rop < My + r,M; + Mgl A™ |», where o, M,, and M, are positive
constants. Therefore condition (iii) implies that

T (2 4 B+ B

ryYoR <
a—y a—1—y a—y
r n rn rn

M, + M, + M, 2012y 2)n/2

oa—y a—1—y a—y
r”l rn rn

~

M2

a—y—n ?
F

M1+M2

a—y a—1—y
rn rn

+

~

where ¥ > 0 and where o > max[y + 1,y 4 7). Since the assumption is
that r,? > max(l, 8,2 + B,%), the above inequalities imply that r,"op <
M, + M, + Mj;2"72, Therefore

reY < (My+ My + M2"¥)[og = M,

where M is a positive constant independent of n.

640/(7/3-4



260 HENRY

For each n either r,2 < max(l, B? + B,» or r,2 = max(l, B2 + B,2).
Therefore for all #, r,* < max(l, 8,2 + B,%, M?/”), and hence

[ A™ B < max[l + Bo® + B2 2(B? + Bid), B2 + B2 + M7,

(n = 1, 2,...). Thus the sequence {4} is uniformly bounded and hence a
subsequence converges. If A* = (8, B, ax*,..., a,*) is the limit of this
subsequence, then || L[P(x, A¥)]lz = px .

4, CONVERGENCE OF MINIMIZING POLYNOMIALS

Let {S,,} be a collection of finite subsets of I, and suppose that
(hl) Sm Q Sm+1
(hy) IfS = Up_ySm,then S = I.
Set
pm = inf sup | L[P(x, 4)] ®
Pk Sm

and
p= ig,}cf sup | L{P(x, A]I. ©)

Because of (h; , h;) we may assume without loss of generality that each S,
in the above collection contains at least & + 1 -+ / distinct points.
Then for each m Theorem 1 implies that there exists a P(x, 4,) Py,
A = By s B1s Gum > Gam 5.5 Qi) SUCh that

pm = SUP | LIP(x, 4n)]l; (10)
that is, P(x, 4,,) is a best approximation to y(x) on S, from P, .

LemMA 2. Let {S,,} be a collection of subsets on I satisfying the hypotheses
(hy , hy), and let {P(x, A,,)}, m = 1, 2,..., be a sequence of polynomials satis-
Sfying (10) for each m. Then the sequence {A,}, m = 1, 2,..., is a uniformly
bounded sequence in R**1,

Proof. By the reasoning of Theorem 1 we have that if r,2 >
max(1, B2 + B,2), then

PO < M,

where r,2 = || 4,2 — (Bs® + Bid), y > 0, M’ is a constant independent m,
and o, is the positive constant in Lemma 1 with R = §,,, (m = 1, 2,...).
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Since $;CS,, Lemma 1 implies that r,”s, << M’, and consequently
I < M'/e; = M". Therefore r,? < max[l, B, + B2 (M")?/*], and conse-
quently

| dm|? < max[l + Be® + B1% 2(By* + Bi%), B + Bi® + (M")*/].

That is, {4,,} is a uniformly bounded sequence in R*+1,

THEOREM 2. Let the sequence of sets {S,} be as described in (hy, hy). If
Pm and p are the numbers given in (8) and (9), then lim,, .., pm = p.

Proof. Let P(x, A*) be an element in P, such that
I LLP(x, A%)]ls = ipf syp | LIP(x, Al = p*
Then since S is dense in 7,
sup | L[P(x, AM)]| = sup | L[P(x, 4%)]].
Thus p* = p. Now let x, € I be such that
sup | LIP(x, An)ll = | LIP(Xo » Am)]l> (11)
and let z,, € S,, be such that
|x0_zm|:s{,2§2 Xo — 8 |. (12)
Then by (9) and (11)
p < | LIP(xo , Am)]l.
Let H(x,y,y") = F(x, y,y") + G(x, y, ¥). Then
P < | h(xo) — h(zw) + | P'(Xo, Am) — Pz , Al

+ I H(xo ’ P(xo s Am): Pl(xo s Am)) - H(Zm s P(Zm ’ Am)3 P'(Zm ] Am))I
+ | L[P(zm , Aw)]l- (13)

Because of Lemma 2 we have for x € I and all m that
|P(stm)| <N1: IP/(x,Am)l <N23
where N, and N, are constants. Let

8l(rn) = l H(xo b P(xO s Am), Pl(xo > Am)) - H(xo s P(zm H) Am)s Pl(zm ] Am))]
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and
az(m) = | H(xo 5 P(Zm 3 Am), Pl(zm ) Am)) - H(zm ’ P(zm » Am)’ P’(Zm ) Am))l'
Then (13) implies that

P < I h(xo) - h(zm)' + I P”(xo ’ A'm) - P”(zm s Am)l
+ 8.(m) + Sy(m) + ppr . 14

Then the equicontinuity of {P(x, 4,)}, {P'(x, A,,)}, the continuity of 4, the
uniform continuity of Hon I X [—N;, Ni] X [—N,, N,], (hy), (12), and (14)
imply that

< lim p,, .

m- oo
But for all m,
Pm < p.

Therefore lim,, ., o, = p-
We conclude this section with the following corollary to Theorem 2.

CoRrOLLARY. Let {P(x, A,)} be a sequence from P, satisfying (10) for
each m. Then there exists a subsequence {P(x, Ay, )} that converges uniformly
on I to a P(x, A") € P, . Furthermore,

sup | L[PG, 4)]| = p.

The proof follows from (4, , A,), Lemma 2, and Theorem 2.

It should be noted that if for a particular operator L the best approximation
on S, to y(x) is unique for all m sufficiently large, and if the best
approximation to y(x) on 7 is unique, then the Corollary implies that
lim,, ., P(x, Ay) = P(x, A) uniformly on I, where P(x, A,) and P(x, A) are
the best approximations from P, to y(x) on S,, and 7, respectively.

5. AN EXAMPLE

The following example illustrates Theorem 2 and the corollary. Let
Ly =y" — (6/(x + D) »* =0, (15)

where
yoO =1, y@0)y=3. (16)
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The solution to (15) and (16) is unique on I = [0, 1]. Select G(x, y,y") =
—(6/(x + 1)%) y%, F(x,y,y') =0, and A(x) = 0. Then u(x) = 6/(x + 1)8,
and @(y,y) = y% Hence | < a <2, and 7 is any constant such that
n < o. Let Py = {Py(x, A)}, where 4 = (1, 3, a;), and where Py(x, 4) =
1 4+ 3x + a,x® Then we wish to best approximate the solution to (15) and
(16) in the sense that

| L[Po(x, Alr = sup | 2a, — (6/(x + 1)) + 3x + ax™)? |

is a minimum over P,. Theorem 1 guarantees that there exists a
Py(x, A*) = 1 4+ 3x + a,*x? such that

I LIPo(x, Al = ipf sup | L{Po(x, D] = p.

Theorem 1 also guarantees that if {S,,} is sequence of sets satisfying (h, , A,),
then for each m there exists a Py(x, 4,) = 1 + 3x + a,,x? such that

| LIP(x, A)]ls,, = ilr,lzf sup | L[Py(x, D]l = pm -

The conclusion of Theorem 2 guarantees that lim, ., p,, == p, and in this
example the Corollary guarantees that

lim | P(x, An) — Polx, Ay = lim | g% — g | = 0.

In the following computations all numbers are rounded to three decimal
places. Let

S, = {0,0.2,0.5, 0.8},
S, = §; U {0.1,0.3,0.4, 0.6,0.7, 0.9},
and
S; = S, U {0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.0}.
Then the best approximation to y(x) on S is
Py(x, 4) = 1 + 3x 4 2.643x2,
and p, = 1.149. The best approximation to y(x) on S, is

Py(x, Ag) = 1 4 3x + 2.564x2,

and p, = 1.089. On Sj the best approximation to y(x) is
Py(x, A5) = 1 4 3x + 2.486x2,
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and p; = 1.028. The best approximation to y(x) on I = [0, 1] is

P(x, A*) = 1 + 3x + 2.486x2,

and p = 1.028. Thus a,* and a,, agree to three decimal places, as do p and p; .
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