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1. INTRODUCTION

In a recent paper [3] the author considers best approximating on 1= [0, c]
the unique solution y(x) to

Ly _ y" + F(x, y, y') + G(x, y, y') - h(x) = 0

with initial conditions

(1)

y(O) = f3o, y'(O) = f31' (2)

The solution is best approximated in the following sense: if P k = {P(x, A)},
where A = (f3o , f31 , 02 , 03 ,... , Ok), and where

then

II L[y(x)] - L[P(x, A)]III = sup IL[P(x, A)]I
I

(3)

is minimized over P k • That is, (3) is minimized over all polynomials of
degree k that satisfy (2). In [3] it is shown that if the operator L in (1) satisfies
certain conditions, then the following statements are valid:

(A) There exists a polynomial Pk(x, A *) E Pk such that

II L[Pk(x, A*)]III = inf sup IL[P(x, A)]I.
Pk I

(4)

(B) The sequences {Pk(x, A*)} and {Pk'(x, A*)}, k = 1,2,... , converge
uniformly on I to y(x) and y'(x) respectively.
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The choice of Pk as the minimizing set is not arbitrary. Requiring that the
k-th degree polynomials over which (4) is minimized satisfy (2) insures that
(B) holds.

Generally it is not possible to find a best approximation from P k to y(x)
on I (in the sense of (4)), even though one exists. Consequently in this paper
we consider best approximating y(x) on arbitrary subsets of 1. If ReI, and
if the operator L satisfies certain conditions, then it is shown that there
exists a P(x, AR) E Pk such that

II L[P(x, AR)]IIR = inf sup IL[P(x, A)]I.
Pk R

(5)

Again the choice of Pk as the minimizing set is motivated by the desirability
of having (B) hold. It is also shown that as the number of points in a finite
subset increases, a subsequence of the best approximations to y(x) on these
finite point sets converges uniformly on I to a best approximation to y(x) on 1.

2. THE OPERATOR L

We assume that L satisfies the conditions listed below.

(i) The functions F and G are elements of C[I x R2].

(ii) IfP(x, A) = f30 + f31X + a2x2+ ... + akx\ A = (f3o , f31 , a2 ,..., ak),
and if II A 112 = f302+ f312+ a22+ ... + ak2, then

IF(x, P(x, A), P'(x, A))[ = 0(11 A lin) for large II A II.

(iii) There exist functions UE C[I] and 0 E C[R2] such that u(x) =I=- 0 and
0(y,y') = 0 iff y or y' = 0, and there exists an ex > max(l, TJ) such that

I G(x, y, y')1 ):: rex I u(x) o (ylr, y'lr)1 for all r):: 1.

(iv) The function h E C[I].

It should be noted that these conditions are essentially those given in [3],
and that examples of nonlinear operators L satisfying conditions (i)-(iv) are
numerous (see [2,3,4] and the example in this paper).

3. MINIMIZING POLYNOMIALS ON ARBITRARY POINT SETS

In this section we establish the existence of best approximations on
arbitrary point sets contained in 1.
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DEFINITION 1. Let C = (co, C1 , ... , Ck), and let

If ReI, then

sup I u(x) 0 [P(x, C), rex, C)]I = GR(C).
R

LEMMA I. Let R, SCI contain at least k + 1 + I distinct points, and
suppose that u(x) has at most I distinct zeros on 1. Then

and if ReS, then UR ~ us.

Proof Since ReS, GR(C) ~ GiC). Thus UR ~ Us. Now suppose that
UR = O. Then there exists a c* E K1 X K2 such that

sup Ju(x) 0 [P(x, C*), rex, C*)]J = O.
R

Then by (iii) either P(x, C*) = 0 or rex, C*) = 0 on at least k + 1 points
for c* E K1 X K2 . Hence either P(x, C*) - 0 on I or P'(X, C*) - 0, on I,
a contradiction to the linear independence of {I, X, x 2,... , x k-l, x k}.

THEOREM I. Suppose that the set ReI contains at least k + 1 + I points.
If conditions (i)-(iv) are satisfied and if u(x) has at most I distinct zeros on I,
then there exists a polynomial P(x,A*) EPk , A* = ({JO,{Jl,a2*,oo.,ak*)'
such that

inf sup I L[P(x, A)]J = sup I L[P(x, A*)]J.
Pk R R

Proof There exists a sequence {P(x, A(nl)} C Pk ,

A (n) - (Q Q (nl (nl) h th t- fJO, fJl ,a1 '00" ak , suc a

lim II L[P(x, A(n»)]IJR = inf sup I L[P(x, A)]I = PR .
n-H1J Pk R
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Thus for all n ;?: no ,

II L[P(x, A<n»]IIR ~ PR + 1.

Consequently the triangle inequality implies that
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I G(x, P(x, A<n», PI(x, A<n»)1 (6)

~ PR + I + IP"(x, A<n»1 + IF(x, P(x, A<n», P'(x, A<n»)1 + Ih(x)I

for all x in R. Let

k

'n2 = II A(n) 112 - (fJ02 + fJ12) = L [a~n)]2,
i~2

and suppose that 'n2 ;?: max(l, fJ02 + fJI2). Then

A(n) ( fJ fJ a(n) a("'»)
C (n) = __ = _0 _1 _2_ _k_, , ,... ,

'", 'n'n'", '",

is an element of K1 X K 2 , (n = 1,2,...). Also (ii), (iii), (iv), and (6) imply that

'nOt. [ u(x) 0 [P(x, A<n)/'n), PI(x, A<n)/'n)]1

~ M 1 + 'n IP"(x, A<n)/'n)1 + 0(11 A<n) II"), (7)

where M1 = PR + 1 + maxI I h(x)l. Hence Lemma I and (7) imply that
'nOt.uR ~ M 1 + 'nM2 + M 3 11 A<n) II", where UR, M2, and M 3 are positive
constants. Therefore condition (iii) implies that

,"lU ,,:::: M1 + M 2 + M 3 (, 2 + fJ 2 + fJ 2)"/2
n R "" ,Ot.-y ,1Jt.-l-y ,Ot.-y '" 0 1

n n n

where y > 0 and where ex ;?: max[y + I, y + 7J]. Since the assumption is
that 'n2 ;?: max(l, fJ02 + fJI2), the above inequalities imply that 'nYuR <
M 1 + M 2+ M 32"/2. Therefore

where M is a positive constant independent of n.
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For each neither rn
2 < max(l, flo2 + fl12) or rn

2 ~ max(l, flo2 + flI2).
Therefore for all n, rn

2 ~ max(l, flo2 + fl12, M2jy), and hence

(n = 1,2,...). Thus the sequence {Aln)} is uniformly bounded and hence a
subsequence converges. If A * = (flo, flI , a2*,..., ak *) is the limit of this
subsequence, then II L[P(x, A *)]IIR = PR .

4. CONVERGENCE OF MINIMIZING POLYNOMIALS

Let {8m } be a collection of finite subsets of I, and suppose that

(hI) 8m k 8m+1

(h2) If S = U:~I 8m , then S = I.

Set

Pm = inf sup I L[P(x, A)]I
Pk Sm

and

P = inf sup I L[P(x, A)]I·
Pk I

(8)

(9)

Because of (hI, h2) we may assume without loss of generality that each 8m

in the above collection contains at least k + 1 + I distinct points.
Then for each m Theorem 1 implies that there exists a P(x, Am) E P k ,

Am = (flo, flI , aIm, a2m ,... , akm) such that

Pm = sup I L[P(x, Am)]I;
Sm

that is, P(x, Am) is a best approximation to y(x) on 8m from Pk .

(10)

LEMMA 2. Let {8m} be a collection ofsubsets on I satisfying the hypotheses
(hI' h2), and let {P(x, Am)}, m = 1,2,... , be a sequence of polynomials satis­
fying (10) for each m. Then the sequence {Am}, m = 1,2,... , is a uniformly
bounded sequence in Rk+1.

Proof By the reasoning of Theorem 1 we have that if rm2 ~
max(l, flo2 + flI2), then

where rm2 = II Am 11 2 - (fl02 + flI2), Y > 0, M' is a constant independent m,
and am is the positive constant in Lemma 1 with R = 8m , (m = 1,2,...).
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Since 81 C. 8m Lemma 1 implies that rmYul:(; M', and consequently
rm

Y :(; M'/Ul = M". Therefore rm
2 :(; max[l, {302 + {312, (M")2/Y], and conse­

quently

That is, {Am} is a uniformly bounded sequence in Rk+l.

THEOREM 2. Let the sequence of sets {8m} be as described in (hI, h2)· If
Pm and p are the numbers given in (8) and (9), then limm~oo Pm = p.

Proof Let P(x, A*) be an element in Pk such that

II L[P(x, A*)] lis = inf sup I L[P(x, A)] I = p*.
Pk S

Then since 8 is dense in I,

sup [ L[P(x, A*)]I = sup I L[P(x, A*)][.
S I

Thus p* = p. Now let X oE I be such that

sup I L[P(x, Am)]1 = [L[P(xo , Am)][,
I

and let Zm E 8m be such that

Then by (9) and (11)

(11)

(12)

p :(; I L[P(xo ,Am)]I·

Let H(x, y, y') = F(x, y, y') + G(x, y, y'). Then

p :(; I h(xo) - h(zm)[ + I P"(xo,Am} - P"(Zm , Am)1

+ I H(xo, P(xo , Am), P'(xo , Am)) - H(zm , P(Zm , Am), P'(Zm , Am»1

+ I L[P(zm ,Am)]I. (13)

Because of Lemma 2 we have for x E I and all m that

where N1 and N2 are constants. Let
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Then (13) implies that

P :( I h(xo) - h(zm)I + I P"(xo , Am) - P"(Zm , Am)[

+ OI(m) + 02(m) + Pm . (14)

Then the equicontinuity of {P(x, Am)}, {P'(x, Am)}, the continuity of h, the
uniform continuity of H on I X [-NI , NI ] x [-N 2 , N 2 ], (h 2), (12), and (14)
imply that

P :( lim Pm·m->oo

But for all m,

Pm :( p.

Therefore limm->oo Pm = p.
We conclude this section with the following corollary to Theorem 2.

COROLLARY. Let {P(x, Am)} be a sequence from Pk satisfying (10) for
each m. Then there exists a subsequence {P(x, Am)} that converges uniformly

I

on I to a P(x, A') E Pk • Furthermore,

sup I L[P(x, A')][ = p.
I

The proof follows from (hI' h2), Lemma 2, and Theorem 2.
It should be noted that iffor a particular operator L the best approximation

on Sm to y(x) is unique for all m sufficiently large, and if the best
approximation to y(x) on I is unique, then the Corollary implies that
limm->co P(x, Am) = P(x, A) uniformly on I, where P(x, Am) and P(x, A) are
the best approximations from Pk to y(x) on Sm and I, respectively.

5. AN EXAMPLE

The following example illustrates Theorem 2 and the corollary. Let

Ly == y" - (6j(x + 1)6) y2 = 0,

where

(15)

y(O) = 1, y'(O) = 3. (16)
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The solution to (15) and (16) is unique on 1= [0, I]. Select G(x, y, y') =
-(6j(x + 1)6) y2, F(x, y, y') = 0, and h(x) = O. Then u(x) = 6j(x + 1)6,
and 0( y, y') = y2. Hence I < ex :( 2, and 7J is any constant such that
7J < ex. Let P2 = {P2(X, A)}, where A = (1,3, a2), and where P2(x, A) =
1 + 3x + a2x2. Then we wish to best approximate the solution to (15) and
(16) in the sense that

is a minimum over P2' Theorem I guarantees that there exists a
P2(x, A*) = 1 + 3x + a2*x2 such that

II L[P2(x, A *)]111 = inf sup IL[P2(x, A)]I = p.
P2 I

Theorem 1 also guarantees that if {Sm} is sequence of sets satisfying (hI' h2),

then for each m there exists a P2(x, Am) = I + 3x + a2mx2 such that

The conclusion of Theorem 2 guarantees that limm_ oo Pm = P, and in this
example the Corollary guarantees that

In the following computations all numbers are rounded to three decimal
places. Let

SI = {O, 0.2, 0.5, 0.8},

S2 = SI U {OJ, 0.3, 0.4, 0.6, 0.7, 0.9},

and

S3 = S2 U {0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.0}.

Then the best approximation to y(x) on SI is

and PI = 1.149. The best approximation to y(x) on S2 is

and P2 = 1.089. On S3 the best approximation to y(x) is
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and P3 = 1.028. The best approximation to y(x) on 1= [0, 1] is

P(x, A *) = 1 + 3x + 2.486x2
,

and P = 1.028. Thus 02* and 023 agree to three decimal places, as do P and P3 •
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